Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(4): 554-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225356

RESUMO

Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.


Assuntos
Urease , Neoplasias da Bexiga Urinária , Camundongos , Animais , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Radioisótopos/uso terapêutico
2.
Nanoscale ; 16(7): 3525-3533, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38273800

RESUMO

A deeper knowledge on the formation and biological fate of polymer based gene vectors is needed for their translation into therapy. Here, polyplexes of polyethyleneimine (PEI) and silencing RNA (siRNA) are formed with theoretical N/P ratios of 2, 4 and 12. Fluorescence correlation spectroscopy (FCS) is used to study the formation of polyplexes from fluorescently labelled PEI and siRNA. FCS proves the presence of free PEI. From the analysis of the autocorrelation functions it was possible to determine the actual stoichiometry of polyplexes. FCS and fluorescence cross correlation spectroscopy (FCCS) are used to follow the fate of the polyplexes intracellularly. Polyplexes disassemble after 1 day inside cells. Positron emission tomography (PET) studies are conducted with radiolabelled polyplexes prepared with siRNA or PEI labelled with 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]F-PyTFP). PET studies in healthy mice show that [18F]siRNA/PEI and siRNA/[18F]PEI polyplexes show similar biodistribution patterns with limited circulation in the bloodstream and accumulation in the liver. Higher activity for [18F]PEI in the kidney and bladder suggests the presence of free PEI.


Assuntos
Polietilenoimina , RNA de Cadeia Dupla , Animais , Camundongos , Polietilenoimina/química , RNA Interferente Pequeno/química , Distribuição Tecidual , Espectrometria de Fluorescência , Tomografia por Emissão de Pósitrons
3.
Small ; 19(48): e2304326, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537708

RESUMO

Polyamine-based vectors offer many advantages for gene therapy, but they are hampered by a limited knowledge on their biological fate and efficacy for nucleic acid delivery. The 18 F radiolabeled siRNA is complexed with poly(allyl amine) hydrochloride (PAH), PEGylated PAH (PAHPEG ), or oleic acid-modified PAH (PAHOleic ) to form polyplexes, and injected them intravenously into healthy rodents. The biodistribution patterns obtained by positron emission tomography (PET) imaging vary according to the polymer used for complexation. Free siRNA is quickly eliminated through the bladder. PAH and oleic acid modify PAH polyplexes accumulate in the lungs and liver. No elimination through the bladder is observed for PAH and PAHOleic within 2 h after administration. PAHPEG polyplexes accumulate in kidneys and are eliminated through the bladder. Polyplexes prepared with 18 F-labeled oleic acid-modified PAH and non-labeled siRNA show similar biodistribution to those prepared with labeled siRNA, but with more accumulation in the lungs due to the presence of non-complexed polymer. Intravenous administration of PAHOleic polyplexes in tumor models results in a limited availability of siRNA. When PAHOleic polyplexes are administered intratumorally in tumor bearing rodents, ≈40% of the radioactivity is retained in the tumor after 180 min while free siRNA is completely eliminated.


Assuntos
Neoplasias , Ácido Oleico , Humanos , RNA Interferente Pequeno , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Polímeros , Poliaminas
4.
J Control Release ; 358: 739-751, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207793

RESUMO

Nucleic acid-based therapies have become a game-changing player in our way of conceiving pharmacology. Nevertheless, the inherent lability of the phosphodiester bond of the genetic material with respect to the blood nucleases severely hampers its delivery in naked form, therefore making it necessary to use delivery vectors. Among the potential non-viral vectors, polymeric materials such as the poly(ß-aminoesters) (PBAEs) stand out as promising gene carriers thanks to their ability to condense nucleic acids in the form of nanometric polyplexes. To keep advancing these systems into their translational preclinical phases, it would be highly valuable to gain accurate insights of their in vivo pharmacokinetic profile. We envisaged that positron emission tomography (PET)-guided imaging could provide us with both, an accurate assessment of the biodistribution of PBAE-derived polyplexes, as well shed light on their clearance process. In this sense, taking advantage of the efficient [19F]-to-[18F]­fluorine isotopic exchange presented by the ammonium trifluoroborate (AMBF3) group, we have designed and synthesized a new 18F-PET radiotracer based on the chemical modification of a linear poly(ß-aminoester). As proof of concept, the incorporation of the newly developed 18F-PBAE into a model nanoformulation was shown to be fully compatible with the formation of the polyplexes, their biophysical characterization, and all their in vitro and in vivo functional features. With this tool in hand, we were able to readily obtain key clues about the pharmacokinetic behavior of a series of oligopeptide-modified PBAEs (OM-PBAEs). The observations described in this study allow us to continue supporting these polymers as an outstanding non-viral gene delivery vector for future applications.


Assuntos
Técnicas de Transferência de Genes , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Polímeros/química , Terapia Genética
5.
Chemistry ; 29(3): e202202604, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239701

RESUMO

To advance the design of self-assembled metallosupramolecular architectures as new generation theranostic agents, the synthesis of 18 F-labelled [Pd2 L4 ]4+ metallacages is reported. Different spectroscopic and bio-analytical methods support the formation of the host-guest cage-cisplatin complex. The biodistribution profiles of one of the cages, alone or encapsulating cisplatin have been studied by PET/CT imaging in healthy mice in vivo, in combination to ICP-MS ex vivo.


Assuntos
Antineoplásicos , Cisplatino , Camundongos , Animais , Cisplatino/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Antineoplásicos/química
6.
Small ; 17(35): e2102211, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278713

RESUMO

An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain: 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.


Assuntos
Nanopartículas , Fosfatos , Animais , Camundongos , Nanopartículas/toxicidade , Poliaminas/toxicidade , Polietilenoglicóis , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Small ; 17(30): e2101519, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145769

RESUMO

While mesoporous silica nanoparticles (MSNs) are extensively studied as high-potential drug delivery platforms, the successful clinical translation of these nanocarriers strongly depends on their biodistribution, biodegradation, and elimination patterns in vivo. Here, a novel method is reported to follow the in vivo degradation of MSNs by tracking a radioactive label embedded in the silica structure. Core-shell silica nanoparticles (NPs) with a dense core and a mesoporous shell are labeled with low quantities of the positron emitter 89 Zr, either in the dense core or in the mesoporous shell. In vivo positron emission tomography imaging and ex vivo organ measurements reveal a remarkable difference in the 89 Zr biodistribution between the shell-labeled and the core-labeled NPs. Release of the radiotracer from shell-labeled NPs is used as a probe of the extent of silica dissolution, and a prompt release of the radioisotope is observed, with partial excretion already in the first 2 h post injection, and a slower accumulation in bones over time. On the other hand, when 89 Zr is embedded in the nanoparticle core, the biodistribution remains largely unchanged during the first 6 h. These findings indicate that MSNs have fast, hour-scale, degradation kinetics in vivo.


Assuntos
Nanopartículas , Dióxido de Silício , Sistemas de Liberação de Medicamentos , Porosidade , Distribuição Tecidual
8.
Sci Robot ; 6(52)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34043548

RESUMO

Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either 124I on gold nanoparticles or 18F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors' self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications.


Assuntos
Nanopartículas Metálicas , Robótica/instrumentação , Bexiga Urinária/diagnóstico por imagem , Administração Intravesical , Animais , Desenho de Equipamento , Feminino , Ouro , Camundongos , Camundongos Endogâmicos C57BL , Movimento (Física) , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Medicina de Precisão , Pesquisa Translacional Biomédica , Urease
9.
J Mater Chem B ; 9(2): 410-420, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367431

RESUMO

Boron neutron capture therapy (BNCT) is a promising cancer treatment exploiting the neutron capture capacity and subsequent fission reaction of boron-10. The emergence of nanotechnology has encouraged the development of nanocarriers capable of accumulating boron atoms preferentially in tumour cells. However, a long circulation time, required for high tumour accumulation, is usually accompanied by accumulation of the nanosystem in organs such as the liver and the spleen, which may cause off-target side effects. This could be overcome by using small-sized boron carriers via a pre-targeting strategy. Here, we report the preparation, characterisation and in vivo evaluation of tetrazine-functionalised boron-rich carbon dots, which show very fast clearance and low tumour uptake after intravenous administration in a mouse HER2 (human epidermal growth factor receptor 2)-positive tumour model. Enhanced tumour accumulation was achieved when using a pretargeting approach, which was accomplished by a highly selective biorthogonal reaction at the tumour site with trans-cyclooctene-functionalised Trastuzumab.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Nanopartículas/química , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...